Andronov-Hopf bifurcation of Higher codimensions in a LiéNard System
نویسندگان
چکیده
Consider a polynomial Liénard system depending on three parameters a, b, c and with the following properties: (i) The origin is the unique equilibrium for all parameters. (ii). If a crosses zero, then the origin changes its stability, and a limit cycle bifurcates from the equilibrium. We investigate analytically this bifurcation in dependence on the parameters b and c and establish the existence of families of limit cycles of multiplicity one, two and three bifurcating from the origin.
منابع مشابه
DYNAMIC COMPLEXITY OF A THREE SPECIES COMPETITIVE FOOD CHAIN MODEL WITH INTER AND INTRA SPECIFIC COMPETITIONS
The present article deals with the inter specific competition and intra-specific competition among predator populations of a prey-dependent three component food chain model consisting of two competitive predator sharing one prey species as their food. The behaviour of the system near the biologically feasible equilibria is thoroughly analyzed. Boundedness and dissipativeness of the system are e...
متن کاملUnfolding a codimension-two, discontinuous, Andronov-Hopf bifurcation.
We present an unfolding of the codimension-two scenario of the simultaneous occurrence of a discontinuous bifurcation and an Andronov-Hopf bifurcation in a piecewise-smooth, continuous system of autonomous ordinary differential equations in the plane. We find that the Hopf cycle undergoes a grazing bifurcation that may be very shortly followed by a saddle-node bifurcation of the orbit. We deriv...
متن کاملGeneralized Liénard Equations, Cyclicity and Hopf–Takens Bifurcations
We investigate the bifurcation of small–amplitude limit cycles in generalized Liénard equations. We use the simplicity of the Liénard family, to illustrate the advantages of the approach based on Bautin ideals. Essentially, this Bautin ideal is generated by the so–called Lyapunov quantities, that are computed for generalized Liénard equations and used to detect the presence of a Hopf– Takens bi...
متن کاملLimit Cycles in Two Types of Symmetric LiÉnard Systems
Liénard systems and their generalized forms are classical and important models of nonlinear oscillators, and have been widely studied by mathematicians and scientists. The main problem considered is the maximal number of limit cycles that the system can have. In this paper, two types of symmetric polynomial Liénard systems are investigated and the maximal number of limit cycles bifurcating from...
متن کاملDelay Induced Oscillations in a Fundamental Power System Model
In this paper, we study the dynamics and stability of a fundamental power system model when a time delay is imposed on the excitation of the generator. It is observed that sustained oscillations can arise in an otherwise stable power system through a delay induced Andronov-Hopf bifurcation. Numerical simulations are conducted to explore the dynamics of the time delayed system after the bifurcat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 22 شماره
صفحات -
تاریخ انتشار 2012